161 research outputs found

    The Gauge-Bethe Correspondence and Geometric Representation Theory

    Full text link
    The Gauge/Bethe correspondence of Nekrasov and Shatashvili relates the spectrum of integrable spin chains to the ground states of supersymmetric gauge theories. Up to now, this correspondence has been an observation; the underlying reason for its existence remaining elusive. We argue here that geometrical representation theory is the mathematical foundation of the Gauge/Bethe correspondence, and it provides a framework to study families of gauge theories in a unified way.Comment: 8 page

    Microscopic quantum superpotential in N=1 gauge theories

    Full text link
    We consider the N=1 super Yang-Mills theory with gauge group U(N), adjoint chiral multiplet X and tree-level superpotential Tr W(X). We compute the quantum effective superpotential W_mic as a function of arbitrary off-shell boundary conditions at infinity for the scalar field X. This effective superpotential has a remarkable property: its critical points are in one-to-one correspondence with the full set of quantum vacua of the theory, providing in particular a unified picture of solutions with different ranks for the low energy gauge group. In this sense, W_mic is a good microscopic effective quantum superpotential for the theory. This property is not shared by other quantum effective superpotentials commonly used in the literature, like in the strong coupling approach or the glueball superpotentials. The result of this paper is a first step in extending Nekrasov's microscopic derivation of the Seiberg-Witten solution of N=2 super Yang-Mills theories to the realm of N=1 gauge theories.Comment: 23 pages, 1 figure; typos corrected, version to appear in JHE

    The Proof of the Dijkgraaf-Vafa Conjecture and application to the mass gap and confinement problems

    Full text link
    Using generalized Konishi anomaly equations, it is known that one can express, in a large class of supersymmetric gauge theories, all the chiral operators expectation values in terms of a finite number of a priori arbitrary constants. We show that these constants are fully determined by the requirement of gauge invariance and an additional anomaly equation. The constraints so obtained turn out to be equivalent to the extremization of the Dijkgraaf-Vafa quantum glueball superpotential, with all terms (including the Veneziano-Yankielowicz part) unambiguously fixed. As an application, we fill non-trivial gaps in existing derivations of the mass gap and confinement properties in super Yang-Mills theories.Comment: 31 pages, 1 figure; v2: typos corrected; references, a note on Kovner-Shifman vacua (section 4.3) and a few clarifying comments in Section 3 added; v3: cosmetic changes, JHEP versio

    Quantum Foam and Topological Strings

    Full text link
    We find an interpretation of the recent connection found between topological strings on Calabi-Yau threefolds and crystal melting: Summing over statistical mechanical configuration of melting crystal is equivalent to a quantum gravitational path integral involving fluctuations of Kahler geometry and topology. We show how the limit shape of the melting crystal emerges as the average geometry and topology of the quantum foam at the string scale. The geometry is classical at large length scales, modified to a smooth limit shape dictated by mirror geometry at string scale and is a quantum foam at area scales g_s \alpha'.Comment: 55 page

    Instanton Number Calculus on Noncommutative R^4

    Get PDF
    In noncommutative spaces, it is unknown whether the Pontrjagin class gives integer, as well as, the relation between the instanton number and Pontrjagin class is not clear. Here we define ``Instanton number'' by the size of BαB_{\alpha} in the ADHM construction. We show the analytical derivation of the noncommuatative U(1) instanton number as an integral of Pontrjagin class (instanton charge) with the Fock space representation. Our approach is for the arbitrary converge noncommutative U(1) instanton solution, and is based on the anti-self-dual (ASD) equation itself. We give the Stokes' theorem for the number operator representation. The Stokes' theorem on the noncommutative space shows that instanton charge is given by some boundary sum. Using the ASD conditions, we conclude that the instanton charge is equivalent to the instanton number.Comment: 29 pages, 7 figures, some statements in Sec.4.3 correcte

    Some Combinatorial Properties of Hook Lengths, Contents, and Parts of Partitions

    Full text link
    This paper proves a generalization of a conjecture of Guoniu Han, inspired originally by an identity of Nekrasov and Okounkov. The main result states that certain sums over partitions p of n, involving symmetric functions of the squares of the hook lengths of p, are polynomial functions of n. A similar result is obtained for symmetric functions of the contents and shifted parts of n.Comment: 20 pages. Correction of some inaccuracies, and a new Theorem 4.

    Glueball operators and the microscopic approach to N=1 gauge theories

    Full text link
    We explain how to generalize Nekrasov's microscopic approach to N=2 gauge theories to the N=1 case, focusing on the typical example of the U(N) theory with one adjoint chiral multiplet X and an arbitrary polynomial tree-level superpotential Tr W(X). We provide a detailed analysis of the generalized glueball operators and a non-perturbative discussion of the Dijkgraaf-Vafa matrix model and of the generalized Konishi anomaly equations. We compute in particular the non-trivial quantum corrections to the Virasoro operators and algebra that generate these equations. We have performed explicit calculations up to two instantons, that involve the next-to-leading order corrections in Nekrasov's Omega-background.Comment: 38 pages, 1 figure and 1 appendix included; v2: typos and the list of references corrected, version to appear in JHE

    Instanton Number of Noncommutative U(n) gauge theory

    Get PDF
    We show that the integral of the first Pontrjagin class is given by an integer and it is identified with instanton number of the U(n) gauge theory on noncommutative R4{\bf R^4}. Here the dimension of the vector space VV that appear in the ADHM construction is called Instanton number. The calculation is done in operator formalism and the first Pontrjagin class is defined by converge series. The origin of the instanton number is investigated closely, too.Comment: 6 color figures, 27 pages, some comments and references are added,typos fixe

    Extended N=1 super Yang-Mills theory

    Full text link
    We solve a generalization of ordinary N=1 super Yang-Mills theory with gauge group U(N) and an adjoint chiral multiplet X for which we turn on both an arbitrary tree-level superpotential term \int d^{2}\theta Tr W(X) and an arbitrary field-dependent gauge kinetic term \int d^{2}\theta Tr V(X)W^{\alpha}W_{\alpha}. When W=0, the model reduces to the extended Seiberg-Witten theory recently studied by Marshakov and Nekrasov. We use two different points of view: a ''macroscopic'' approach, using generalized anomaly equations, the Dijkgraaf-Vafa matrix model and the glueball superpotential; and the recently proposed ''microscopic'' approach, using Nekrasov's sum over colored partitions and the quantum microscopic superpotential. The two formalisms are based on completely different sets of variables and statistical ensembles. Yet it is shown that they yield precisely the same gauge theory correlators. This beautiful mathematical equivalence is a facet of the open/closed string duality. A full microscopic derivation of the non-perturbative N=1 gauge dynamics follows.Comment: 47 pages, 3 figures, 2 appendices; v2: typos and references corrected, published in JHE

    Topological Vector Symmetry of BRSTQFT and Construction of Maximal Supersymmetry

    Get PDF
    The scalar and vector topological Yang-Mills symmetries determine a closed and consistent sector of Yang-Mills supersymmetry. We provide a geometrical construction of these symmetries, based on a horizontality condition on reducible manifolds. This yields globally well-defined scalar and vector topological BRST operators. These operators generate a subalgebra of maximally supersymmetric Yang-Mills theory, which is small enough to be closed off-shell with a finite set of auxiliary fields and large enough to determine the Yang-Mills supersymmetric theory. Poincar\'e supersymmetry is reached in the limit of flat manifolds. The arbitrariness of the gauge functions in BRSTQFTs is thus removed by the requirement of scalar and vector topological symmetry, which also determines the complete supersymmetry transformations in a twisted way. Provided additional Killing vectors exist on the manifold, an equivariant extension of our geometrical framework is provided, and the resulting "equivariant topological field theory" corresponds to the twist of super Yang-Mills theory on Omega backgrounds.Comment: 50 page
    • …
    corecore